Batteries are classified into two broad categories, each type with advantages and disadvantages.
Primary batteries irreversibly (within limits of practicality) transform chemical energy to electrical energy. When the initial supply of reactants is exhausted, energy cannot be readily restored to the battery by electrical means.
Secondary batteries can be recharged; that is, they can have their chemical reactions reversed by supplying electrical energy to the cell, restoring their original composition.
Historically, some types of primary batteries used, for example, for telegraph circuits, were restored to operation by replacing the components of the battery consumed by the chemical reaction.Secondary batteries are not indefinitely rechargeable due to dissipation of the active materials, loss of electrolyte and internal co] Primary batteries
Main article: Primary cel
Primary batteries can produce current immediately on assembly. Disposable batteries are intended to be used once and discarded. These are most commonly used in portable devices that have low current drain, are only used intermittently, or are used well away from an alternative power source, such as in alarm and communication circuits where other electric power is only intermittently available. Disposable primary cells cannot be reliably recharged, since the chemical reactions are not easily reversible and active materials may not return to their original forms. Battery manufacturers recommend against attempting to recharge primary cells
Common types of disposable batteries include zinc-carbon batteries and alkaline batteries
Primary batteries irreversibly (within limits of practicality) transform chemical energy to electrical energy. When the initial supply of reactants is exhausted, energy cannot be readily restored to the battery by electrical means.
Secondary batteries can be recharged; that is, they can have their chemical reactions reversed by supplying electrical energy to the cell, restoring their original composition.
Historically, some types of primary batteries used, for example, for telegraph circuits, were restored to operation by replacing the components of the battery consumed by the chemical reaction.Secondary batteries are not indefinitely rechargeable due to dissipation of the active materials, loss of electrolyte and internal co] Primary batteries
Main article: Primary cel
Primary batteries can produce current immediately on assembly. Disposable batteries are intended to be used once and discarded. These are most commonly used in portable devices that have low current drain, are only used intermittently, or are used well away from an alternative power source, such as in alarm and communication circuits where other electric power is only intermittently available. Disposable primary cells cannot be reliably recharged, since the chemical reactions are not easily reversible and active materials may not return to their original forms. Battery manufacturers recommend against attempting to recharge primary cells
Common types of disposable batteries include zinc-carbon batteries and alkaline batteries
. Generally, these have higher energy densities than rechargeable batteries but disposable batteries do not fare well under high-drain applications with loads under 75 ohms (75 ΩSecondary batteries
Main article: Rechargeable battery
Secondary batteries must be charged before use; they are usually assembled with active materials in the discharged state. Rechargeable batteries or secondary cells can be recharged by applying electrical current, which reverses the chemical reactions that occur during its use. Devices to supply the appropriate current are called chargers or rechargers.
The oldest form of rechargeable battery is the lead-acid battery.This battery is notable in that it contains a liquid in an unsealed container, requiring that the battery be kept upright and the area be well ventilated to ensure safe dispersal of the hydrogen gas produced by these batteries during overcharging. The lead-acid battery is also very heavy for the amount of electrical energy it can supply. Despite this, its low manufacturing cost and its high surge current levels make its use common where a large capacity (over approximately 10Ah) is required or where the weight and ease of handling are not concerns.
A common form of the lead-acid battery is the modern car battery, which can generally deliver a peak current of 450 amperes. An improved type of liquid electrolyte battery is the sealed valve regulated lead acid (VRLA) battery, popular in the automotive industry as a replacement for the lead-acid wet cell. The VRLA battery uses an immobilized sulfuric acid electrolyte, reducing the chance of leakage and extending shelf life.VRLA batteries have the electrolyte immobilized, usually by one of two means:
Gel batteries (or "gel cell") contain a semi-solid electrolyte to prevent spillage.
Absorbed Glass Mat (AGM) batteries absorb the electrolyte in a special fiberglass matting
Other portable rechargeable batteries include several "dry cell" types, which are sealed units and are therefore useful in appliances such as mobile phones and laptop computers. Cells of this type (in order of increasing power density and cost) include nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH) and lithium-ion (Li-ion) cells.By far, Li-ion has the highest share of the dry cell rechargeable market. Meanwhile, NiMH has replaced NiCd in most applications due to its higher capacity, but NiCd remains in use in power tools, two-wa radios, and medical equipment.NiZn is a new technology that is not yet well established commercially.
Recent developments include batteries with embedded functionality such as USBCELL, with a built-in charger and USB connector within the AA format, enabling the battery to be charged by plugging into a USB port without a charger,[and low self-discharge (LSD) mix chemistries such as Hybrio ReCyko,[and Eneloopwhere cells are precharged prior to shipping.
Battery cell types
There are many general types of electrochemical cells, according to chemical processes applied and design chosen. The variation includes galvanic cells, electrolytic cells, fuel cells, flow cells and voltaic piles.
Wet cell
A wet cell battery has a liquid electrolyte. Other names are flooded cell since the liquid covers all internal parts, or vented cell since gases produced during operation can escape to the air. Wet cells were a precursor to dry cells and are commonly used as a learning tool for electrochemistry. It is often built with common laboratory supplies, like beakers, for demonstrations of how electrochemical cells work. A particular type of wet cell known as a concentration cell is important in understanding corrosion. Wet cells may be primary cells (non-rechargeable) or secondary cells (rechargeable). Originally all practical primary batteries such as the Daniel cell were built as open-topped glass jar wet cells. Other primary wet cells are the Leclanche cell, Grove cell, Bunsen cell, Chromic acid cell, Clark cel and Weston cell. The Leclanche cell chemistry was adapted to the first dry cells.
Wet cells are still used in automobile batteries and in industry for standby power for switchgear, telecommunication or large uninterruptible power supplies, but in many places batteries with gel cells have been used instead. These applications commonly use lead-acid or nickel-cadmium cells.
Dry cell
A dry cell has the electrolyte immobilized as a paste, with only enough moisture in the paste to allow current to flow. Compared to a wet cell, the battery can be operated in any random position, and will not spill its electrolyte if inverted.
While a dry cell's electrolyte is not truly completely free of moisture and must contain some moisture to function, it has the advantage of containing no sloshing liquid that might leak or drip out when inverted or handled roughly, making it highly suitable for small portable electric devices. By comparison, the first wet cells were typically fragile glass containers with lead rods hanging from the open top, and needed careful handling to avoid spillage. An inverted wet cell would leak, while a dry cell would not. Lead-acid batteries would not achieve the safety and portability of the dry cell, until the development of the gel battery.
A common dry cell battery is the zinc-carbon battery, using a cell sometimes called the dry Leclanché cell, with a nominal voltage of 1.5 volts, the same nominal voltage as the alkaline battery (since both use the same zinc-manganese dioxide combination.
The makeup of a standard dry cell is a zinc anode (negative pole), usually in the form of a cylindrical pot, with a carbon cathode (positive pole) in the form of a central rod. The electrolyte is ammonium chloride in the form of a paste next to the zinc anode. The remaining space between the electrolyte and carbon cathode is taken up by a second paste consisting of ammonium chloride and manganese dioxide, the latter acting as a depolariser. In some more modern types of so called 'high power' batteries, the ammonium chloride has been replaced by zinc chloride.
Molten salt
A molten salt battery is a primary or secondary battery that uses a molten salt as its electrolyte. Their energy density and power density makes them potentially useful for electric vehicles, but they must be carefully insulated to retain heat.
Reserve
A reserve battery can be stored for a long period of time and is activated when its internal parts (usually electrolyte) are assembled. For example, a battery for an electronic fuze might be activated by the impact of firing a gun, breaking a capsule of electrolyte to activate the battery and power the fuze's circuits. Reserve batteries are usually designed for a short service life (seconds or minutes) after long storage (years).
Main article: Rechargeable battery
Secondary batteries must be charged before use; they are usually assembled with active materials in the discharged state. Rechargeable batteries or secondary cells can be recharged by applying electrical current, which reverses the chemical reactions that occur during its use. Devices to supply the appropriate current are called chargers or rechargers.
The oldest form of rechargeable battery is the lead-acid battery.This battery is notable in that it contains a liquid in an unsealed container, requiring that the battery be kept upright and the area be well ventilated to ensure safe dispersal of the hydrogen gas produced by these batteries during overcharging. The lead-acid battery is also very heavy for the amount of electrical energy it can supply. Despite this, its low manufacturing cost and its high surge current levels make its use common where a large capacity (over approximately 10Ah) is required or where the weight and ease of handling are not concerns.
A common form of the lead-acid battery is the modern car battery, which can generally deliver a peak current of 450 amperes. An improved type of liquid electrolyte battery is the sealed valve regulated lead acid (VRLA) battery, popular in the automotive industry as a replacement for the lead-acid wet cell. The VRLA battery uses an immobilized sulfuric acid electrolyte, reducing the chance of leakage and extending shelf life.VRLA batteries have the electrolyte immobilized, usually by one of two means:
Gel batteries (or "gel cell") contain a semi-solid electrolyte to prevent spillage.
Absorbed Glass Mat (AGM) batteries absorb the electrolyte in a special fiberglass matting
Other portable rechargeable batteries include several "dry cell" types, which are sealed units and are therefore useful in appliances such as mobile phones and laptop computers. Cells of this type (in order of increasing power density and cost) include nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH) and lithium-ion (Li-ion) cells.By far, Li-ion has the highest share of the dry cell rechargeable market. Meanwhile, NiMH has replaced NiCd in most applications due to its higher capacity, but NiCd remains in use in power tools, two-wa radios, and medical equipment.NiZn is a new technology that is not yet well established commercially.
Recent developments include batteries with embedded functionality such as USBCELL, with a built-in charger and USB connector within the AA format, enabling the battery to be charged by plugging into a USB port without a charger,[and low self-discharge (LSD) mix chemistries such as Hybrio ReCyko,[and Eneloopwhere cells are precharged prior to shipping.
Battery cell types
There are many general types of electrochemical cells, according to chemical processes applied and design chosen. The variation includes galvanic cells, electrolytic cells, fuel cells, flow cells and voltaic piles.
Wet cell
A wet cell battery has a liquid electrolyte. Other names are flooded cell since the liquid covers all internal parts, or vented cell since gases produced during operation can escape to the air. Wet cells were a precursor to dry cells and are commonly used as a learning tool for electrochemistry. It is often built with common laboratory supplies, like beakers, for demonstrations of how electrochemical cells work. A particular type of wet cell known as a concentration cell is important in understanding corrosion. Wet cells may be primary cells (non-rechargeable) or secondary cells (rechargeable). Originally all practical primary batteries such as the Daniel cell were built as open-topped glass jar wet cells. Other primary wet cells are the Leclanche cell, Grove cell, Bunsen cell, Chromic acid cell, Clark cel and Weston cell. The Leclanche cell chemistry was adapted to the first dry cells.
Wet cells are still used in automobile batteries and in industry for standby power for switchgear, telecommunication or large uninterruptible power supplies, but in many places batteries with gel cells have been used instead. These applications commonly use lead-acid or nickel-cadmium cells.
Dry cell
A dry cell has the electrolyte immobilized as a paste, with only enough moisture in the paste to allow current to flow. Compared to a wet cell, the battery can be operated in any random position, and will not spill its electrolyte if inverted.
While a dry cell's electrolyte is not truly completely free of moisture and must contain some moisture to function, it has the advantage of containing no sloshing liquid that might leak or drip out when inverted or handled roughly, making it highly suitable for small portable electric devices. By comparison, the first wet cells were typically fragile glass containers with lead rods hanging from the open top, and needed careful handling to avoid spillage. An inverted wet cell would leak, while a dry cell would not. Lead-acid batteries would not achieve the safety and portability of the dry cell, until the development of the gel battery.
A common dry cell battery is the zinc-carbon battery, using a cell sometimes called the dry Leclanché cell, with a nominal voltage of 1.5 volts, the same nominal voltage as the alkaline battery (since both use the same zinc-manganese dioxide combination.
The makeup of a standard dry cell is a zinc anode (negative pole), usually in the form of a cylindrical pot, with a carbon cathode (positive pole) in the form of a central rod. The electrolyte is ammonium chloride in the form of a paste next to the zinc anode. The remaining space between the electrolyte and carbon cathode is taken up by a second paste consisting of ammonium chloride and manganese dioxide, the latter acting as a depolariser. In some more modern types of so called 'high power' batteries, the ammonium chloride has been replaced by zinc chloride.
Molten salt
A molten salt battery is a primary or secondary battery that uses a molten salt as its electrolyte. Their energy density and power density makes them potentially useful for electric vehicles, but they must be carefully insulated to retain heat.
Reserve
A reserve battery can be stored for a long period of time and is activated when its internal parts (usually electrolyte) are assembled. For example, a battery for an electronic fuze might be activated by the impact of firing a gun, breaking a capsule of electrolyte to activate the battery and power the fuze's circuits. Reserve batteries are usually designed for a short service life (seconds or minutes) after long storage (years).
Battery cell performance
A battery's characteristics may vary over load cycle, charge cycle and over life time due to many factors including internal chemistry, current drain and temperature.
A battery's characteristics may vary over load cycle, charge cycle and over life time due to many factors including internal chemistry, current drain and temperature.