Welcome to my blog, enjoy reading.

Nanolithography


Optical lithography
Main article: Photolithography
Optical lithography, which has been the predominant
patterning technique since the advent of the semiconductor age, is capable of producing sub-100-nm patterns with the use of very short wavelengths (currently 193 nm). Optical lithography will require the use of liquid immersion and a host of resolution enhancement technologies (phase-shift masks (PSM), optical proximity correction (OPC)) at the 32 nm node. Most experts feel that traditional optical lithography techniques will not be cost effective below 22 nm. At that point, it may be replaced by a next-generation lithography (NGL) technique.
Other nanolithography techniques
X-ray lithography can be extended to an optical resolution of 15 nm by using the short wavelengths of 1 nm for the illumination. This is implemented by the proximity printing approach. The technique is developed to the extent of batch processing. The extension of the method relies on Near Field X-rays in Fresnel diffraction: a clear mask feature is "demagnified" by proximity to a wafer that is set near to a "Critical Condition". This Condition determines the mask-to-wafer Gap and depends on both the size of the clear mask feature and on the wavelength. The method is simple because it requires no lenses.
A method of pitch resolution enhancement which is gaining acceptance is double patterning. This technique increases feature density by printing new features in between pre-printed features on the same layer. It is flexible because it can be adapted for any exposure or patterning technique. The feature size is reduced by non-lithographic techniques such as etching or sidewall spacers.
Work is in progress on an optical maskless lithography tool. This uses a digital micro-mirror array to directly manipulate reflected light without the need for an intervening mask. Throughput is inherently low, but the elimination of mask-related production costs - which are rising exponentially with every technology generation - means that such a system might be more cost effective in the case of small production runs of state of the art circuits, such as in a research lab, where tool throughput is not a concern.
The most common nanolithographic technique is Electron-Beam Direct-Write Lithography (EBDW), the use of a beam of electrons to produce a pattern — typically in a polymeric resist such as PMMA.
Extreme ultraviolet lithography (EUV) is a form of optical lithography using ultrashort wavelengths (13.5 nm). It is the most popularly considered NGL technique.
Charged-particle lithography, such as ion- or electron-projection lithographies (PREVAIL, SCALPEL, LEEPL), are also capable of very-high-resolution patterning. Ion beam lithography uses a focused or broad beam of energetic lightweight ions (like He+) for transferring pattern to a surface. Using Ion Beam Proximity Lithography (IBL) nano-scale features can be transferred on non-planar surfaces.
Neutral Particle Lithography(NPL) uses a broad beam of energetic neutral particle for pattern transfer on a surface.
Nanoimprint lithography (NIL), and its variants, such as Step-and-Flash Imprint Lithography, LISA and LADI are promising nanopattern replication technologies. This technique can be combined with contact printing.
Scanning probe lithography (SPL) is a promising tool for patterning at the deep nanometer-scale. For example, individual atoms may be manipulated using the tip of a scanning tunneling microscope (STM). Dip-Pen Nanolithography (DPN) is the first commercially available SPL technology based on atomic force microscopy.
Atomic Force Microscopic Nanolithography (AFM) is a chemomechanical surface patterning technique that uses an atomic force microscope.
Magnetolithography (ML) based on applying a magnetic field on the substrate using paramagnetic metal masks call "magnetic mask". Magnetic mask which is analog to photomask define the spatial distribution and shape of the applied magnetic field. The second component is ferromagnetic nanoparticles (analog to the photoresist) that are assembled onto the substrate according to the field induced by the magnetic mask

my counter

web counter html code