Welcome to my blog, enjoy reading.

Protein and peptide delivery


Protein and peptides exert multiple biological actions in human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.
Cancer
A schematic illustration showing how nanoparticles or other cancer drugs might be used to treat cancer.
The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.
Another nanoproperty, high surface area to volume ratio, allows many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system). A very exciting research question is how to make these imaging nanoparticles do more things for cancer. For instance, is it possible to manufacture multifunctional nanoparticles that would detect, image, and then proceed to treat a tumor? This question is under vigorous investigation; the answer to which could shape the future of cancer treatment.A promising new cancer treatment that may one day replace radiation and chemotherapy is edging closer to human trials. Kanzius RF therapy attaches microscopic nanoparticles to cancer cells and then "cooks" tumors inside the body with radio waves that heat only the nanoparticles and the adjacent (cancerous) cells.
Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood.
The basic point to use drug delivery is based upon three facts: a) efficient encapsulation of the drugs, b) successful delivery of said drugs to the targeted region of the body, and c) successful release of that drug there.
Researchers at Rice University under Prof. Jennifer West, have demonstrated the use of 120 nm diameter nanoshells coated with gold to kill cancer tumors in mice. The nanoshells can be targeted to bond to cancerous cells by conjugating antibodies or peptides to the nanoshell surface. By irradiating the area of the tumor with an infrared laser, which passes through flesh without heating it, the gold is heated sufficiently to cause death to the cancer cells.
Additionally, John Kanzius has invented a radio machine which uses a combination of radio waves and carbon or gold nanoparticles to destroy cancer cells.
Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.
One scientist, University of Michigan’s James Baker, believes he has discovered a highly efficient and successful way of delivering cancer-treatment drugs that is less harmful to the surrounding body. Baker has developed a nanotechnology that can locate and then eliminate cancerous cells. He looks at a molecule called a dendrimer. This molecule has over one hundred hooks on it that allow it to attach to cells in the body for a variety of purposes. Baker then attaches folic-acid to a few of the hooks (folic-acid, being a vitamin, is received by cells in the body). Cancer cells have more vitamin receptors than normal cells, so Baker's vitamin-laden dendrimer will be absorbed by the cancer cell. To the rest of the hooks on the dendrimer, Baker places anti-cancer drugs that will be absorbed with the dendrimer into the cancer cell, thereby delivering the cancer drug to the cancer cell and nowhere else (Bullis 2006).
In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a “toxic trail” of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growths, and tumors.
Surgery
At Rice University, a flesh welder is used to fuse two pieces of chicken meat into a single piece. The two pieces of chicken are placed together touching. A greenish liquid containing gold-coated nanoshells is dribbled along the seam. An infrared laser is traced along the seam, causing the two sides to weld together. This could solve the difficulties and blood leaks caused when the surgeon tries to restitch the arteries s/he has cut during a kidney or heart transplant. The flesh welder could weld the artery perfectly.
Visualization
Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source.

Nanoparticle targeting
It is greatly observed that nanoparticles are promising tools for the advancement of drug delivery, medical imaging, and as diagnostic sensors.[who?] However, the biodistribution of these nanoparticles is mostly unknown due to the difficulty in targeting specific organs in the body. Current research in the excretory systems of mice, however, shows the ability of gold composites to selectively target certain organs based on their size and charge. These composites are encapsulated by a dendrimer and assigned a specific charge and size. Positively-charged gold nanoparticles were found to enter the kidneys while negatively-charged gold nanoparticles remained in the liver and spleen. It is suggested that the positive surface charge of the nanoparticle decreases the rate of osponization of nanoparticles in the liver, thus affecting the excretory pathway. Even at a relatively small size of 5 nm , though, these particles can become compartmentalized in the peripheral tissues, and will therefore accumulate in the body over time. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.

my counter

web counter html code