Supramolecular systems are rarely designed from first principles. Rather, chemists have a range of well-studied structural and functional building blocks that they are able to use to build up larger functional architectures. Many of these exist as whole families of similar units, from which the analog with the exact desired properties can be chosen.
Synthetic recognition motifs
The pi-pi charge-transfer interactions of bipyridinium with dioxyarenes or diaminoarenes have been used extensively for the construction of mechanically interlocked systems and in crystal engineering.
The use of crown ether binding with metal or ammonium cations is ubiquitous in supramolecular chemistry.
The formation of carboxylic acid dimers and other simple hydrogen bonding interactions.
The complexation of bipyridines or tripyridines with ruthenium, silver or other metal ions is of great utility in the construction of complex architectures of many individual molecules.
The complexation of porphyrins or phthalocyanines around metal ions gives access to catalytic, photochemical and electrochemical properties as well as complexation. These units are used a great deal by nature.
Macrocycles
Macrocycles are very useful in supramolecular chemistry, as they provide whole cavities that can completely surround guest molecules and may be chemically modified to fine-tune their properties.
Cyclodextrins, calixarenes, cucurbiturils and crown ethers are readily synthesized in large quantities, and are therefore convenient for use in supramolecular systems.
More complex cyclophanes, and cryptands can be synthesized to provide more taliored recognition properties.
Structural units
Many supramolecular systems require their components to have suitable spacing and conformations relative to each other, and therefore easily-employed structural units are required.
Commonly used spacers and connecting groups include polyether chains, biphenyls and triphenyls, and simple alkyl chains. The chemistry for creating and connecting these units is very well understood.
nanoparticles, nanorods, fullerenes and dendrimers offer nanometer-sized structure and encapsulation units.
Surfaces can be used as scaffolds for the construction of complex systems and also for interfacing electrochemical systems with electrodes. Regular surfaces can be used for the construction of self-assembled monolayers and multilayers.
Photo-/electro-chemically active units
Porphyrins, and phthalocyanines have highly tunable photochemical and electrochemical activity as well as the potential for forming complexes.
Photochromic and photoisomerizable groups have the ability to change their shapes and properties (including binding properties) upon exposure to light.
TTF and quinones have more than one stable oxidation state, and therefore can be switched with redox chemistry or electrochemistry. Other units such as benzidine derivatives, viologens groups and fullerenes, have also been utilized in supramolecular electrochemical devices.
Biologically-derived units
The extremely strong complexation between avidin and biotin is instrumental in blood clotting, and has been used as the recognition motif to construct synthetic systems.
The binding of enzymes with their cofactors has been used as a route to produce modified enzymes, electrically contacted enzymes, and even photoswitchable enzymes.
DNA has been used both as a structural and as a functional unit in synthetic supramolecular systems