Nanoparticles can also be made of C60, as is the case with almost any room temperature solid, and several groups have done this and studied toxicity of such particles. The results in the work of Oberdörster at Southern Methodist University, published in "Environmental Health Perspectives" in July 2004, in which questions were raised of potential cytotoxicity, has now been shown by several sources to be likely caused by the tetrahydrofuran used in preparing the 30 nm–100 nm particles of C60 used in the research. Isakovic, et al., 2006, who review this phenomenon, gives results showing that removal of THF from the C60 particles resulted in a loss of toxicity. Sayes, et al., 2007, also show that particles prepared as in Oberdorster caused no detectable inflammatory response when instilled intratracheally in rats after observation for 3 months, suggesting that even the particles prepared by Oberdorster do not exhibit markers of toxicity in mammalian models. This work used as a benchmark quartz particles, which did give an inflammatory response.
A comprehensive and recent review of work on fullerene toxicity is available in "Toxicity Studies of Fullerenes and Derivatives," a chapter from the book "Bio-applications of Nanoparticles". In this work, the authors review the work on fullerene toxicity beginning in the early 1990s to present, and conclude that the evidence gathered since the discovery of fullerenes overwhelmingly points to C60 being non-toxic. As is the case for toxicity profile with any chemical modification of a structural moiety, the authors suggest that individual molecules be assessed individually